JavaScript 浮点数陷阱及解法
众所周知,JavaScript 浮点数运算时经常遇到会 0.000000001 和 0.999999999 这样奇怪的结果,如 0.1+0.2=0.30000000000000004、1-0.9=0.09999999999999998,很多人知道这是浮点数误差问题,但具体就说不清楚了。本文帮你理清这背后的原理以及解决方案,还会向你解释JS中的大数危机和四则运算中会遇到的坑。
浮点数的存储
首先要搞清楚 JavaScript 如何存储小数。和其它语言如 Java 和 Python 不同,JavaScript 中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用 64 位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。计算机组成原理中有过详细介绍,如果你不记得也没关系。
这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。
64位比特又可分为三个部分:
- 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
- 指数位E:中间的 11 位存储指数(exponent),用来表示次方数
- 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零
实际数字就可以用以下公式来计算:
注意以上的公式遵循科学计数法的规范,在十进制是为0<M<10,到二进行就是0<M<2。也就是说整数部分只能是1,所以可以被舍去,只保留后面的小数部分。如 4.5 转换成二进制就是 100.1,科学计数法表示是 1.001*2^2,舍去1后 M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以再减去一个中间数 1023,[0,1022]表示为负,[1024,2047] 表示为正。如4.5 的指数E = 1025,尾数M为 001。
最终的公式变成:
所以 4.5 最终表示为(M=001、E=1025):
下面再以 0.1 例解释浮点误差的原因, 0.1 转成二进制表示为 0.0001100110011001100(1100循环),1.100110011001100x2^-4,所以 E=-4+1023=1019;M 舍去首位的1,得到 100110011...。最终就是:
转化成十进制后为2^(-4)+2^(-7)+2^(-8)+ ... =0.100000000000000005551115123126,因此就出现了浮点误差。
为什么 0.1+0.2=0.30000000000000004?
计算步骤为:
// 0.1 和 0.2 都转化成二进制后再进行运算
0.00011001100110011001100110011001100110011001100110011010 +
0.0011001100110011001100110011001100110011001100110011010 =
0.0100110011001100110011001100110011001100110011001100111
// 转成十进制正好是 0.30000000000000004
2
3
4
5
6
为什么 x=0.1 能得到 0.1?
恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992,对应科学计数尾数是 9.007199254740992,这也是 JS 最多能表示的精度。它的长度是 16,所以可以使用 toPrecision(16) 来做精度运算,超过的精度会自动做凑整处理。于是就有:
0.10000000000000000555.toPrecision(16)
// 返回 0.1000000000000000,去掉末尾的零后正好为 0.1
// 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试:
0.1.toPrecision(17) = 0.10000000000000001
0.1.toPrecision(21) = 0.100000000000000005551
2
3
4
5
6
大数危机
可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢? 由于 E 最大值是 1023,所以最大可以表示的整数是 2^1024 - 1,这就是能表示的最大整数。但你并不能这样计算这个数字,因为从 2^1024 开始就变成了 Infinity
> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity
2
3
4
5
那么对于 (2^53, 2^63) 之间的数会出现什么情况呢?
- (2^53, 2^54) 之间的数会两个选一个,只能精确表示偶数
- (2^54, 2^55) 之间的数会四个选一个,只能精确表示4的倍数
... 依次跳过更多2的倍数
下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53) 只是最中间非常小的一部分,越往两边越稀疏越不精确。
在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了 9007199254740992,最终的解法是把订单号改成字符串处理。
要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多。所以原生支持大数就很有必要了,现在 TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有望彻底解决。在浏览器正式支持前,可以使用 Babel 7.0 来实现,它的内部是自动转换成 big-integer 来计算,要注意的是这样能保持精度但运算效率会降低。
toPrecision vs toFixed
数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。
注意在计算的中间过程不要使用,只用于最终结果。
不同点就需要注意一下:
- toPrecision 是处理精度,精度是从左至右第一个不为0的数开始数起。
- toFixed 是小数点后指定位数取整,从小数点开始数起。
两者都能对多余数字做凑整处理,也有些人用 toFixed 来做四舍五入,但一定要知道它是有 Bug 的。
如:1.005.toFixed(2) 返回的是 1.00 而不是 1.01。
原因: 1.005 实际对应的数字是 1.00499999999999989,在四舍五入时全部被舍去!
解决方案
回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储无限的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。
数据展示类
当你拿到 1.4000000000000001 这样的数据要展示时,建议使用 toPrecision 凑整并 parseFloat 转成数字后再显示,如下:
parseFloat(1.4000000000000001.toPrecision(12)) === 1.4 // True
封装成方法就是:
function strip(num, precision = 12) {
return +parseFloat(num.toPrecision(precision));
}
2
3
为什么选择 12 做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。
数据运算类
对于运算类操作,如 +-*/,就不能使用 toPrecision 了。正确的做法是把小数转成整数后再运算。以加法为例:
/**
* 精确加法
*/
function add(num1, num2) {
const num1Digits = (num1.toString().split('.')[1] || '').length;
const num2Digits = (num2.toString().split('.')[1] || '').length;
const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits));
return (num1 * baseNum + num2 * baseNum) / baseNum;
}
2
3
4
5
6
7
8
9
以上方法能适用于大部分场景。遇到科学计数法如 2.3e+1(当数字精度大于21时,数字会强制转为科学计数法形式显示)时还需要特别处理一下。
number-precision
完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来!
/**
* 把错误的数据转正
* strip(0.09999999999999998)=0.1
*/
function strip(num: number, precision = 12): number {
return +parseFloat(num.toPrecision(precision));
}
/**
* Return digits length of a number
* @param {*number} num Input number
*/
function digitLength(num: number): number {
// Get digit length of e
const eSplit = num.toString().split(/[eE]/);
const len = (eSplit[0].split('.')[1] || '').length - (+(eSplit[1] || 0));
return len > 0 ? len : 0;
}
/**
* 把小数转成整数,支持科学计数法。如果是小数则放大成整数
* @param {*number} num 输入数
*/
function float2Fixed(num: number): number {
if (num.toString().indexOf('e') === -1) {
return Number(num.toString().replace('.', ''));
}
const dLen = digitLength(num);
return dLen > 0 ? strip(num * Math.pow(10, dLen)) : num;
}
/**
* 检测数字是否越界,如果越界给出提示
* @param {*number} num 输入数
*/
function checkBoundary(num: number) {
if (num > Number.MAX_SAFE_INTEGER || num < Number.MIN_SAFE_INTEGER) {
console.warn(`${num} is beyond boundary when transfer to integer, the results may not be accurate`);
}
}
/**
* 精确乘法
*/
function times(num1: number, num2: number, ...others: number[]): number {
if (others.length > 0) {
return times(times(num1, num2), others[0], ...others.slice(1));
}
const num1Changed = float2Fixed(num1);
const num2Changed = float2Fixed(num2);
const baseNum = digitLength(num1) + digitLength(num2);
const leftValue = num1Changed * num2Changed;
checkBoundary(leftValue);
return leftValue / Math.pow(10, baseNum);
}
/**
* 精确加法
*/
function plus(num1: number, num2: number, ...others: number[]): number {
if (others.length > 0) {
return plus(plus(num1, num2), others[0], ...others.slice(1));
}
const baseNum = Math.pow(10, Math.max(digitLength(num1), digitLength(num2)));
return (times(num1, baseNum) + times(num2, baseNum)) / baseNum;
}
/**
* 精确减法,类似于加法
*/
function minus(num1: number, num2: number, ...others: number[]): number {
if (others.length > 0) {
return minus(minus(num1, num2), others[0], ...others.slice(1));
}
const baseNum = Math.pow(10, Math.max(digitLength(num1), digitLength(num2)));
return (times(num1, baseNum) - times(num2, baseNum)) / baseNum;
}
/**
* 精确除法
*/
function divide(num1: number, num2: number, ...others: number[]): number {
if (others.length > 0) {
return divide(divide(num1, num2), others[0], ...others.slice(1));
}
const num1Changed = float2Fixed(num1);
const num2Changed = float2Fixed(num2);
checkBoundary(num1Changed);
checkBoundary(num2Changed);
return times((num1Changed / num2Changed), Math.pow(10, digitLength(num2) - digitLength(num1)));
}
/**
* 四舍五入
*/
function round(num: number, ratio: number): number {
const base = Math.pow(10, ratio);
return divide(Math.round(times(num, base)), base);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101